Fallopian tube secretory epithelial cells (FTSECs) have been suggested to be the source of high-grade serous ovarian carcinoma (HGSOC). Although several genetic alterations are known to be involved in HGSOC development, the minimal requirements remain unclear. We aimed to identify oncogenic mutations indispensable for HGSOC development in a stepwise model, using immortalized FTSECs. FTSECs were isolated from clinical samples and immortalized by overexpression of cyclin D1, CDK4R24C, and hTERT. Oncogenic mutations in the p53, c-Myc, and RAS/PI3K pathways were mimicked by lentiviral transduction. We found two distinct patterns of gene alteration essential for HGSOC development: p53/KRAS/AKT and p53/KRAS/c-Myc. Dominant-negative p53, alone or combined with oncogenic KRAS (KRASV12), constitutively active AKT (CA-AKT), and c-Myc, did not induce tumorigenesis in immortalized cells; however, overexpression of CA-AKT or c-Myc, along with dominant-negative p53 and KRASV12, conferred tumorigenic potential. Transformed FTSECs formed tumors in nude mice that were grossly, histologically, and immunohistochemically similar to human HGSOCs. Interestingly, mice harboring tumors with c-Myc amplifications displayed extensive metastases, consistent with the increased dissemination in their human counterparts. Thus, aberrant p53/KRASV12/c-Myc or p53/KRASV12/PI3K-AKT signaling was the minimum requirement for FTSEC carcinogenesis. The model based on this evidence could shed light on the early stages of HGSOC development.
Keywords: RAS/PI3K pathway; c-Myc; carcinogenesis; fallopian tube; high-grade serous ovarian carcinoma.