Design, synthesis and biological evaluation of novel 1,3,4-trisubstituted pyrazole derivatives as potential chemotherapeutic agents for hepatocellular carcinoma

Bioorg Chem. 2018 Aug:78:149-157. doi: 10.1016/j.bioorg.2018.03.014. Epub 2018 Mar 16.

Abstract

A series of novel 1,3,4-trisubstituted pyrazole derivatives were synthesized and evaluated for their cytotoxic activity against three different cancer cell lines namely HCT116, UO-31 and HepG2. Compounds 3b, 3d, 7b and 9 showed excellent anticancer activity against all the tested cancer cell lines and had better cytotoxic activities than the reference drug, Sorafenib. Therefore, these compounds were chosen to be further evaluated in a panel of HCC cell lines. Among them, 3b and 7b were the most active compounds against HCC cells used here. Further studies on the mechanism demonstrated that 3b and 7b induced apoptosis in addition to induction of cell cycle arrest at G2/M phase in HepG2 and Huh7 cells. Consistent with these results, caspase-3 assay was done and the results revealed that the pro-apoptotic activity of the target compounds could be due to the stimulation of caspases-3. In addition, CDK1 inhibition assay was done and it was found that compounds 3b and 7b inhibited CDK1 activities with IC50 values of 2.38 and 1.52 µM, respectively. Finally, pyrazole derivatives 3b and 7b showed potent bioactivities, indicating that these compounds could be potent anticancer drugs in the future.

Keywords: Apoptosis; CDK1 inhibition; Cell cycle; Hepatocellular carcinoma; Pyrazoles; Synthesis.

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects
  • CDC2 Protein Kinase / antagonists & inhibitors
  • CDC2 Protein Kinase / metabolism
  • Carcinoma, Hepatocellular / drug therapy*
  • Carcinoma, Hepatocellular / metabolism
  • Carcinoma, Hepatocellular / pathology
  • Caspase 3 / biosynthesis
  • Cell Cycle / drug effects
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Design*
  • Drug Screening Assays, Antitumor
  • Humans
  • Liver Neoplasms / drug therapy*
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / pathology
  • Protein Kinase Inhibitors / chemical synthesis
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Pyrazoles / chemical synthesis
  • Pyrazoles / chemistry
  • Pyrazoles / pharmacology*
  • Structure-Activity Relationship
  • Tumor Cells, Cultured

Substances

  • Antineoplastic Agents
  • Protein Kinase Inhibitors
  • Pyrazoles
  • pyrazole
  • CDC2 Protein Kinase
  • CDK1 protein, human
  • Caspase 3