In this work, electrically-conducting poly(Toludine Blue) was employed for the first time as synthetic receptor film, prepared by Molecular Imprinting strategies and using electrochemical methods, for the specific screening of breast cancer biomarker Carbohydrate Antigen 15-3 (CA 15-3). The protein imprinted poly(Toluidine Blue) film was grown in a pre-formed Toluidine Blue (TB) tailed SAM at the AuSPE surface, which greatly enhanced the stability against degradation of the Molecular Imprinted Polymer (MIP) film at the electrode surface. The MIP receptor film recognition ability towards the protein was investigated by fitting data to Freundlich isotherm. The binding affinity (KF) obtained for the MIP system was significantly higher (~ 12-fold) to that obtained for the NIP system, demonstrating the success of the approach in creating imprinted materials that specifically respond to CA 15-3 protein. The incubation of the MIP modified electrode with increasing concentration of protein (from 0.10 U mL-1 to 1000 U mL-1) resulted in a decrease of the ferro/ferricyanide redox current. The device displayed linear response from 0.10 U mL-1 to 100 U mL-1 and LODs below 0.10 U mL-1 were obtained from calibration curves built in neutral buffer and diluted artificial serum, using DPV technique, enabling the detection of the protein biomarker at clinically relevant levels. The developed MIP biosensor was applied to the determination of CA 15-3 in spiked serum samples with satisfactory results. The developed device provides a new strategy for sensitive, rapid, simple and cost-effective screening of CA 15-3 biomarker. Importantly, the overall approach seems suitable for point-of-care (PoC) use in clinical context.
Keywords: Biosensor; Carbohydrate antigen 15-3; Molecularly-imprinted polymer; Screen-printed gold electrode; Toluidine Blue.
Copyright © 2018. Published by Elsevier B.V.