Invasive species can cause substantial ecological impacts on native biodiversity. While ecological theory attempts to explain the processes involved in the trophic integration of invaders into native food webs and their competitive impacts on resident species, results are equivocal. In addition, quantifying the relative strength of impacts from non-native species (interspecific competition) versus the release of native conspecifics (intraspecific competition) is important but rarely completed.Two model non-native fishes, the globally invasive Cyprinus carpio and Carassius auratus, and the model native fish Tinca tinca, were used in a pond experiment to test how increased intra- and interspecific competition influenced trophic niches and somatic growth rates. This was complemented by samples collected from three natural fish communities where the model fishes were present. The isotopic niche, calculated using stable isotope data, represented the trophic niche.The pond experiment used additive and substitutive treatments to quantify the trophic niche variation that resulted from intra- and interspecific competitive interactions. Although the trophic niche sizes of the model species were not significantly altered by any competitive treatment, they all resulted in patterns of interspecific niche divergence. Increased interspecific competition caused the trophic niche of T. tinca to shift to a significantly higher trophic position, whereas intraspecific competition caused its position to shift towards elevated δ13C. These patterns were independent of impacts on fish growth rates, which were only significantly altered when interspecific competition was elevated.In the natural fish communities, patterns of trophic niche partitioning between the model fishes was evident, with no niche sharing. Comparison of these results with those of the experiment revealed the most similar results between the two approaches were for the niche partitioning between sympatric T. tinca and C. carpio.These results indicate that trophic niche divergence facilitates the integration of introduced species into food webs, but there are differences in how this manifests between introductions that increase inter- and intraspecific competition. In entirety, these results suggest that the initial ecological response to an introduction appears to be a trophic re-organisation of the food web that minimises the trophic interactions between competing species. A plain language summary is available for this article.
Keywords: biological invasions; global change; isotopic niche; niche divergence.