Radionuclide-fluorescence Reporter Gene Imaging to Track Tumor Progression in Rodent Tumor Models

J Vis Exp. 2018 Mar 13:(133):57088. doi: 10.3791/57088.

Abstract

Metastasis is responsible for most cancer deaths. Despite extensive research, the mechanistic understanding of the complex processes governing metastasis remains incomplete. In vivo models are paramount for metastasis research, but require refinement. Tracking spontaneous metastasis by non-invasive in vivo imaging is now possible, but remains challenging as it requires long-time observation and high sensitivity. We describe a longitudinal combined radionuclide and fluorescence whole-body in vivo imaging approach for tracking tumor progression and spontaneous metastasis. This reporter gene methodology employs the sodium iodide symporter (NIS) fused to a fluorescent protein (FP). Cancer cells are engineered to stably express NIS-FP followed by selection based on fluorescence-activated cell sorting. Corresponding tumor models are established in mice. NIS-FP expressing cancer cells are tracked non-invasively in vivo at the whole-body level by positron emission tomography (PET) using the NIS radiotracer [18F]BF4-. PET is currently the most sensitive in vivo imaging technology available at this scale and enables reliable and absolute quantification. Current methods either rely on large cohorts of animals that are euthanized for metastasis assessment at varying time points, or rely on barely quantifiable 2D imaging. The advantages of the described method are: (i) highly sensitive non-invasive in vivo 3D PET imaging and quantification, (ii) automated PET tracer production, (iii) a significant reduction in required animal numbers due to repeat imaging options, (iv) the acquisition of paired data from subsequent imaging sessions providing better statistical data, and (v) the intrinsic option for ex vivo confirmation of cancer cells in tissues by fluorescence microscopy or cytometry. In this protocol, we describe all steps required for routine NIS-FP-afforded non-invasive in vivo cancer cell tracking using PET/CT and ex vivo confirmation of in vivo results. This protocol has applications beyond cancer research whenever in vivo localization, expansion and long-time monitoring of a cell population is of interest.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Animals
  • Disease Progression
  • Female
  • Fluorescence
  • Mice
  • Neoplasms, Experimental / diagnostic imaging*
  • Neoplasms, Experimental / genetics*
  • Neoplasms, Experimental / pathology
  • Positron Emission Tomography Computed Tomography / methods*
  • Radionuclide Imaging / methods*
  • Rodentia
  • Transfection