Sphingosine-1-phosphate Receptor 2 Signaling Promotes Caspase-11-dependent Macrophage Pyroptosis and Worsens Escherichia coli Sepsis Outcome

Anesthesiology. 2018 Aug;129(2):311-320. doi: 10.1097/ALN.0000000000002196.

Abstract

What we already know about this topic: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Pyroptosis, a type of proinflammatory programmed cell death, drives cytokine storm. Caspase-11-dependent macrophage pyroptosis contributes to mortality during sepsis. Sphingosine-1-phosphate receptor 2 (S1PR2) signaling can amplify interleukin-1β secretion in endotoxin-induced inflammation. Here, we hypothesized that S1PR2 signaling increases caspase-11-dependent macrophage pyroptosis and worsens Gram-negative sepsis outcome.

Methods: A Gram-negative sepsis model was induced through intraperitoneal injection of Escherichia coli. Primary peritoneal macrophages isolated from wild-type, S1pr2-deficient (S1pr2), or nucleotide-binding oligomerization domain-like receptor protein-3-deficient mice were treated with E. coli. Caspase-11 activation, macrophage pyroptosis, and Ras homolog gene family, member A-guanosine triphosphate levels were assessed in those cells. Additionally, monocyte caspase-4 (an analog of caspase-11) expression and its correlation with S1PR2 expression were determined in patients with Gram-negative sepsis (n = 11).

Results: Genetic deficiency of S1PR2 significantly improved survival rate (2/10 [20%] in wild-type vs. 7/10 [70%] in S1pr2, P = 0.004) and decreased peritoneal macrophage pyroptosis (pyroptosis rate: 35 ± 3% in wild-type vs. 10 ± 3% in S1pr2, P < 0.001). Decreased caspase-11 activation in S1PR2 deficiency cells contributed to the reduced macrophage pyroptosis. In addition, RhoA inhibitor abrogated the amplified caspase-11 activation in wild-type or S1PR2-overexpressing cells. In patients with Gram-negative sepsis, caspase-4 increased significantly in monocytes compared to nonseptic controls and was positively correlated with S1PR2 (r = 0.636, P = 0.035).

Conclusions: S1PR2 deficiency decreased macrophage pyroptosis and improved survival in E. coli sepsis. These beneficial effects were attributed to the decreased caspase-11 activation of S1PR2-deficient macrophages. S1PR2 and caspase-11 may be promising new targets for treatment of sepsis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacteremia / metabolism*
  • Bacteremia / pathology
  • Caspases / metabolism*
  • Caspases, Initiator
  • Cells, Cultured
  • Escherichia coli*
  • Humans
  • Macrophages / metabolism*
  • Macrophages / pathology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Pyroptosis / physiology*
  • Receptors, Lysosphingolipid / deficiency*
  • Sepsis / metabolism
  • Sepsis / pathology
  • Signal Transduction / physiology
  • Sphingosine-1-Phosphate Receptors

Substances

  • Receptors, Lysosphingolipid
  • Sphingosine-1-Phosphate Receptors
  • sphingosine-1-phosphate receptor-2, mouse
  • Casp4 protein, mouse
  • Caspases
  • Caspases, Initiator