The enhanced permeability and retention (EPR) effect is variable depending on nanoparticle properties and tumor/vessel conditions. Thus, intratumoral evaluations of the vasculature and nanoparticle distribution are important for predicting the therapeutic efficacy and the intractability of tumors. We aimed to develop a tumor vasculature evaluation method and high-resolution nanoparticle delivery imaging using magnetic resonance (MR) micro-imaging technology with a gadolinium (Gd)-dendron assembled liposomal contrast agent. Using the Gd-liposome and a cryogenic receiving coil, we achieved 50-μm isotropic MR angiography with clear visualization of tumor micro-vessel structure. The Gd-liposome-enhanced MR micro-imaging revealed differences in the vascular structures between Colon26- and SU-DHL6-grafted mice models. The vessel volumes and diameters measured for both tumors were significantly correlated with histological observations. The MR micro-imaging methods facilitate the evaluation of intratumoral vascularization patterns, the quantitative assessment of vascular-properties that alter tumor malignancy, particle retentivity, and the effects of treatment.
Keywords: Angiography; EPR; Liposomal contrast agent; MRI; Tumor heterogeneity.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.