In this work, three-armed luminogens IAcTr-out and IAcTr-in were synthesized and used as emitters bearing triazine and indenoacridine moieties in thermally activated delayed fluorescence organic light-emitting diodes (OLEDs). These molecules could form a uniform thin film via the solution process and also allowed the subsequent deposition of an electron transporting layer either by vacuum deposition or by an all-solution coating method. Intriguingly, the new luminogens displayed aggregation-induced emission (AIE), which is a unique photophysical phenomenon. As a nondoped emitting layer (EML), IAcTr-in showed external quantum efficiencies (EQEs) of 11.8% for the hybrid-solution processed OLED and 10.9% for the all-solution processed OLED with a low efficiency roll-off. This was evident by the higher photoluminescence quantum yield and higher rate constant of reverse intersystem crossing of IAcTr-in, as compared to IAcTr-out. These AIE luminogens were used as dopants and mixed with the well-known host material 1,3-bis( N-carbazolyl)benzene (mCP) to produce a high-efficiency OLED with a two-component EML. The maximum EQE of 17.5% was obtained when using EML with IAcTr-out doping (25 wt %) into mCP, and the OLED with EML bearing IAcTr-in and mCP showed a higher maximum EQE of 18.4% as in the case of the nondoped EML-based device.
Keywords: aggregation-induced emission; organic light-emitting diodes; solution-process; thermally activated delayed fluorescence; three-armed luminogen.