Hearing acuity and sound localization are affected by aging and may contribute to cognitive dementias. Although loss of sensorineural conduction is well documented to occur with age, little is known regarding short-term synaptic plasticity in central auditory nuclei. Age-related changes in synaptic transmission properties were evaluated at the mouse calyx of Held, a sign-inverting relay synapse in the circuit for sound localization, in juvenile adults (1 month old) and late middle-aged (18-21 months old) mice. Synaptic timing and short-term plasticity were severely disrupted in older mice. Surprisingly, acetyl-l-carnitine (ALCAR), an anti-inflammatory agent that facilitates mitochondrial function, fully reversed synaptic transmission delays and defects in short-term plasticity in aged mice to reflect transmission similar to that seen in juvenile adults. These findings support ALCAR supplementation as an adjuvant to improve short-term plasticity and potentially central nervous system performance in animals compromised by age and/or neurodegenerative disease.
Keywords: Acetyl-l-carnitine; Aging; Calyx of held; Electrophysiology; Neurotransmission; Synaptic plasticity.
Copyright © 2018 Elsevier Inc. All rights reserved.