Objective: This study was to investigate the molecular role of Wnt5a on inflammation-driven intervertebral disc degeneration (IVDD).
Methods: The expression of Wnt5a was analyzed in human nucleus pulposus (NP) tissues with immunohistochemical staining. The effects of Wnt5a on matrix production were assessed by RT-qPCR and western blotting. Small interfering RNAs (siRNAs), promoter deletion assay, and promoter binding site mutant were used to reveal the molecular role of Wnt5a in TNF-α-induced matrix metalloproteinase (MMP) expression. The regulatory effects of TNF-α on Wnt5a were investigated with pharmachemical inhibitors and siRNA experiment.
Results: The expression of Wnt5a was elevated in moderately degenerated human NP tissue with similar expression pattern of TNF-α. In NP cells, Wnt5a significantly increased aggrecan and collagen II expression. Inhibition of JNK or interfering Sox9 gene expression significantly suppressed Wnt5a-induced matrix production. AP-1(JunB) binding sites were located in Sox9 promoter and mutation of these sites sabotaged Wnt5a-induced Sox9 up-regulation and subsequent matrix genes expression. Notably, Wnt5a, which was induced by TNF-α, on the other way round suppressed TNF-α-NF-κB (p65) signaling and subsequent MMPs expression. In vivo studies with MR imaging confirmed the protective role of Wnt5a in IVDD.
Conclusions: Wnt5a, which can be induced by TNF-α, increased matrix production in a Sox9-dependent manner through the activation of JNK-AP1 (JunB) signaling, and antagonized TNF-α-induced up-regulation of MMPs through the inhibition of NF-κB signaling. It indicates that Wnt5a suppresses IVDD through a TNF-α/NF-κB-Wnt5a negative-feedback loop.
Keywords: Intervertebral disc degeneration; Negative feedback loop; Nucleus pulposus; TNF-α; Wnt5a.
Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.