CaBPs are a family of Ca2+ binding proteins related to calmodulin. Two CaBP family members, CaBP1 and CaBP2, are highly expressed in the cochlea. Here, we investigated the significance of CaBP1 and CaBP2 for hearing in mice lacking expression of these proteins (CaBP1 KO and CaBP2 KO) using auditory brain responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). In CaBP1 KO mice, ABR wave I was larger in amplitude, and shorter in latency and faster in decay, suggestive of enhanced synchrony of auditory nerve fibers. This interpretation was supported by the greater excitability of CaBP1 KO than WT neurons in whole-cell patch clamp recordings of spiral ganglion neurons in culture, and normal presynaptic function of CaBP1 KO IHCs. DPOAEs and ABR thresholds were normal in 4-week old CaBP1 KO mice, but elevated ABR thresholds became evident at 32 kHz at 9 weeks, and at 8 and 16 kHz by 6 months of age. In contrast, CaBP2 KO mice exhibited significant ABR threshold elevations at 4 weeks of age that became more severe in the mid-frequency range by 9 weeks. Though normal at 4 weeks, DPOAEs in CaBP2 KO mice were significantly reduced in the mid-frequency range by 9 weeks. Our results reveal requirements for CaBP1 and CaBP2 in the peripheral auditory system and highlight the diverse modes by which CaBPs influence sensory processing.
Keywords: Ca(2+) channels; Ca(2+) sensor; Hair cells; Spiral ganglion.
Copyright © 2018. Published by Elsevier B.V.