Esophageal carcinoma is aggressive in nature and its prognosis is largely dependent on the degree of invasion. Histone deacetylase 6 (HDAC6), as the most unique member of HDACs family, has the positive activity to promote initiation and progression of various cancers via targeting multiple non-histone proteins in cytoplasm. In this study, we found that HDAC6 was over-expressed in three esophageal cancer cell lines (KYSE140, KYSE170, KYSE180) when compared to non-carcinoma esophageal epithelial cell HEEC-1. Then two HDAC6 specific siRNAs and HDAC6 inhibitor tubastatin A greatly suppressed KYSE140 and KYSE180 cells proliferation and migration, and the inhibition of cell motility was accompanied by elevated acetylation of α-tubulin, a target of HDAC6. Consistently, the microtubulin skeleton was stabilized after HDAC6 knockdown or inhibition. In addition, acetylation status of HSP90, another HDAC6 target, was also increased towards HDAC6 knockdown or inhibition by co-immunoprecipitation assay. Besides, co-treatment of HSP90 inhibitor (PU-H71) and HDAC6 inhibitor (tubastatin A) induced a stronger cell migration inhibition compared to administration of either drug alone. Furthermore, cell proliferation of KYSE140 and KYSE180 were also compromised in response to combination of HDAC6 and HSP90 inhibitors. Additionally, co-administration of HSP90 inhibitor and HDAC6 inhibitor strongly inhibited tumor growth in vivo. Taken together, our results indicated that HDAC6 is a promising target by inhibiting HSP90 function in ESCC.
Keywords: HDAC6; HSP90; esophageal carcinoma; motility; proliferation.
© 2018 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.