The degradation behaviors including oxidation and hydrolysis of silicone modified polycarbonate urethanes were thoroughly investigated. These polyurethanes were based on polyhexamethylene carbonate (PHMC)/polydimethylsiloxane (PDMS) mixed macrodiols with molar ratio of PDMS ranging from 5% to 30%. It was proved that PDMS tended to migrate toward surface and even a small amount of PDMS could form a silicone-like surface. Macrophages-mediated oxidation process indicated that the PDMS surface layer was desirable to protect the fragile soft PHMC from the attack of degradative species. Hydrolysis process was probed in detail after immersing in boiling buffered water using combined analytical tools. Hydrolytically stable PDMS could act as protective shields for the bulk to hinder the chain scission of polycarbonate carbonyls whereas the hydrolysis of urethane linkages was less affected. Although the promoted phase separation at higher PDMS fractions lead to possible physical defects and mechanical compromise after degradation, simultaneously enhanced oxidation and hydrolysis resistance could be achieved for the polyurethanes with proper PDMS incorporation.