Threshold-Based Quantification in a Multiline Lateral Flow Assay via Computationally Designed Capture Efficiency

Anal Chem. 2018 Jun 5;90(11):6643-6650. doi: 10.1021/acs.analchem.8b00440. Epub 2018 May 4.

Abstract

Lateral flow assays (LFAs) are widely used for yes/no detection of analytes, but they are not well-suited for quantification. We show that the sensitivity of the test line in a lateral flow assay can be tuned to appear at a specific sample concentration by varying the density of capture molecules at the test line and that when test lines tuned for different responses are combined into a single test strip, lines appear at specific thresholds of sample concentration. We also developed a model based on mass-action kinetics that accurately described test line signal and shape over a wide matrix of capture molecules and sample concentrations in single-line strips. The model was used to design a three-line test strip with lines designed to appear at logarithmically spaced sample concentrations, and the experiments showed a remarkable match to predictions. The response of this "graded ladder bar" format is due to the effect of test line concentration on capture efficiency at each test line, not on sample depletion effects, and the effect is maintained whether a system is under kinetic or equilibrium control. These features enable design of nonlinear responses (logarithmic here) and suggest robustness for different systems. Thus, the graded ladder bar format could be a useful tool for applications requiring quantification of sample concentrations over a wide dynamic range.

Publication types

  • Research Support, Non-U.S. Gov't