This study aims to identify environmental air pollution adversely affecting pulmonary function among a community-based general population living in Korean industrial complexes. A total of 1963 residents participated in a pulmonary function test (PFT). The sample population consisted of an exposed group (n = 1487) living within a radius of 5 km of industrial complexes and a control group (n = 476) living over a radius of 10 km from the industrial complexes in Gwangyang and Yeosu cities. PFT results were calculated for each resident of the study population. On-site questionnaire surveys with face-to-face interviews were also conducted to collect more detailed information on personal lifestyles, medical history, exposure to air pollution, and respiratory disease and related symptoms. A total of 486 measured samples were collected by eight automated air-monitoring stations installed in four counties of Gwangyang and four counties of Yeosu in South Korea from January 2006 to February 2007. Mean levels of SO₂ (0.012 ppm), CO (0.648 ppm), NO₂ (0.02 ppm), O₃ (0.034 ppm), and PM10 (43.07 μg/m³), collected within a radius of 5 km, were significantly higher than those collected over a radius of 10 km from Gwangyang and Yeosu industrial complexes. Prevalence odds ratio (OR) of abnormal pulmonary function in the exposed group of residents (<5 km) was elevated at 1.24 (95% CI 0.71⁻1.96), but not statistically significant (p > 0.05). In multiple linear regression analysis, forced expiratory volume in one second (FEV₁) and forced vital capacity (FVC) levels significantly declined as SO₂, CO, and O₃ levels increased when adjusting for age, sex, body mass index (BMI), alcohol, smoking, secondhand smoke, and respiratory disease and related symptoms (n = 1963) (p < 0.05). These results suggest that exposure to air pollution affects pulmonary function levels of residents living in Korean industrial complexes.
Keywords: air pollution; health effect; industrial complex; ozone; pulmonary function test; sulfur dioxide.