The determination of the properties (i.e. line center, width, and amplitude) of a spectral line is simulated using a Monte Carlo method. For dual-comb spectroscopy, ideal repetition rates emerge for both the signal and LO combs that do not correspond to the repetition rates that possess the highest signal-to-noise ratio. The determination is even more accurate when the repetition rates have an arbitrary near-harmonic ratio. The simulation results are generalized to allow for the comparison of any two spectroscopic systems (i.e. not just comb-based systems) by performing the simulations as a function of the spectral point spacing and signal-to-noise ratio of the acquired data.