Sustained clonal hematopoiesis by HLA-lacking hematopoietic stem cells without driver mutations in aplastic anemia

Blood Adv. 2018 May 8;2(9):1000-1012. doi: 10.1182/bloodadvances.2017013953.

Abstract

Clonal hematopoiesis by hematopoietic stem progenitor cells (HSPCs) that lack an HLA class I allele (HLA- HSPCs) is common in patients with acquired aplastic anemia (AA); however, it remains unknown whether the cytotoxic T lymphocyte (CTL) attack that allows for survival of HLA- HSPCs is directed at nonmutated HSPCs or HSPCs with somatic mutations or how escaped HLA- HSPC clones support sustained hematopoiesis. We investigated the presence of somatic mutations in HLA- granulocytes obtained from 15 AA patients in long-term remission (median, 13 years; range, 2-30 years). Targeted sequencing of HLA- granulocytes revealed somatic mutations (DNMT3A, n = 2; TET2, ZRSR2, and CBL, n = 1) in 3 elderly patients between 79 and 92 years of age, but not in 12 other patients aged 27 to 74 years (median, 51.5 years). The chronological and clonogenic analyses of the 3 cases revealed that ZRSR2 mutation in 1 case, which occurred in an HLA- HSPC with a DNMT3A mutation, was the only mutation associated with expansion of the HSPC clone. Whole-exome sequencing of the sorted HLA- granulocytes confirmed the absence of any driver mutations in 5 patients who had a particularly large loss of heterozygosity in chromosome 6p (6pLOH) clone size. Flow-fluorescence in situ hybridization analyses of sorted HLA+ and HLA- granulocytes showed no telomere attrition in HLA- granulocytes. The findings suggest that HLA- HSPC clones that escape CTL attack are essentially free from somatic mutations related to myeloid malignancies and are able to support long-term clonal hematopoiesis without developing driver mutations in AA patients unless HLA loss occurs in HSPCs with somatic mutations.

Publication types

  • Clinical Trial
  • Multicenter Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Anemia, Aplastic / blood*
  • Anemia, Aplastic / genetics*
  • Anemia, Aplastic / pathology
  • Anemia, Aplastic / therapy
  • Chromosomes, Human, Pair 6 / genetics
  • DNA (Cytosine-5-)-Methyltransferases / genetics
  • DNA (Cytosine-5-)-Methyltransferases / metabolism
  • DNA Methyltransferase 3A
  • Female
  • Hematopoiesis / genetics*
  • Hematopoietic Stem Cells / metabolism*
  • Hematopoietic Stem Cells / pathology
  • Humans
  • Loss of Heterozygosity
  • Male
  • Middle Aged
  • Mutation*
  • Remission Induction

Substances

  • DNMT3A protein, human
  • DNA (Cytosine-5-)-Methyltransferases
  • DNA Methyltransferase 3A