Magnetic resonance spectroscopy of fiber tracts in children with traumatic brain injury: A combined MRS - Diffusion MRI study

Hum Brain Mapp. 2018 Sep;39(9):3759-3768. doi: 10.1002/hbm.24209. Epub 2018 May 10.

Abstract

Traumatic brain injury can cause extensive damage to the white matter (WM) of the brain. These disruptions can be especially damaging in children, whose brains are still maturing. Diffusion magnetic resonance imaging (dMRI) is the most commonly used method to assess WM organization, but it has limited resolution to differentiate causes of WM disruption. Magnetic resonance spectroscopy (MRS) yields spectra showing the levels of neurometabolites that can indicate neuronal/axonal health, inflammation, membrane proliferation/turnover, and other cellular processes that are on-going post-injury. Previous analyses on this dataset revealed a significant division within the msTBI patient group, based on interhemispheric transfer time (IHTT); one subgroup of patients (TBI-normal) showed evidence of recovery over time, while the other showed continuing degeneration (TBI-slow). We combined dMRI with MRS to better understand WM disruptions in children with moderate-severe traumatic brain injury (msTBI). Tracts with poorer WM organization, as shown by lower FA and higher MD and RD, also showed lower N-acetylaspartate (NAA), a marker of neuronal and axonal health and myelination. We did not find lower NAA in tracts with normal WM organization. Choline, a marker of inflammation, membrane turnover, or gliosis, did not show such associations. We further show that multi-modal imaging can improve outcome prediction over a single modality, as well as over earlier cognitive function measures. Our results suggest that demyelination plays an important role in WM disruption post-injury in a subgroup of msTBI children and indicate the utility of multi-modal imaging.

Keywords: MRS; diffusion MRI; longitudinal; pediatric; traumatic brain injury.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adolescent
  • Anisotropy
  • Aspartic Acid / analogs & derivatives
  • Aspartic Acid / analysis
  • Brain Damage, Chronic / diagnostic imaging
  • Brain Damage, Chronic / etiology
  • Brain Damage, Chronic / pathology
  • Brain Injuries, Traumatic / complications
  • Brain Injuries, Traumatic / diagnostic imaging*
  • Brain Injuries, Traumatic / pathology
  • Child
  • Choline / analysis
  • Cognition Disorders / diagnostic imaging
  • Cognition Disorders / etiology
  • Cognition Disorders / pathology
  • Demyelinating Diseases / diagnostic imaging
  • Demyelinating Diseases / etiology
  • Demyelinating Diseases / pathology
  • Diffusion Magnetic Resonance Imaging*
  • Female
  • Humans
  • Magnetic Resonance Spectroscopy*
  • Male
  • Multimodal Imaging*
  • Neuroimaging* / methods
  • White Matter / diagnostic imaging
  • White Matter / pathology

Substances

  • Aspartic Acid
  • N-acetylaspartate
  • Choline