Developing an efficient single-atom material (SAM) synthesis and exploring the energy-related catalytic reaction are important but still challenging. A polymerization-pyrolysis-evaporation (PPE) strategy was developed to synthesize N-doped porous carbon (NPC) with anchored atomically dispersed Fe-N4 catalytic sites. This material was derived from predesigned bimetallic Zn/Fe polyphthalocyanine. Experiments and calculations demonstrate the formed Fe-N4 site exhibits superior trifunctional electrocatalytic performance for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. In overall water splitting and rechargeable Zn-air battery devices containing the Fe-N4 SAs/NPC catalyst, it exhibits high efficiency and extraordinary stability. This current PPE method is a general strategy for preparing M SAs/NPC (M=Co, Ni, Mn), bringing new perspectives for designing various SAMs for catalytic application.
Keywords: EXAFS; N-doped porous carbon; electrochemistry; polymerization; pyrolysis.
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.