Intrinsic and acquired resistance to anti-EGFR antibody therapy, frequently mediated by a mutant or amplified KRAS oncogene, is a significant challenge in the treatment of colorectal cancer (CRC). However, the mechanism of KRAS-mediated therapeutic resistance is not well understood. In this study, we demonstrate that clinically used anti-EGFR antibodies, including cetuximab and panitumumab, induce killing of sensitive CRC cells through p73-dependent transcriptional activation of the pro-apoptotic Bcl-2 family protein PUMA. PUMA induction and p73 activation are abrogated in CRC cells with acquired resistance to anti-EGFR antibodies due to KRAS alterations. Inhibition of aurora kinases preferentially kills mutant KRAS CRC cells and overcomes KRAS-mediated resistance to anti-EGFR antibodies in vitro and in vivo by restoring PUMA induction. Our results suggest that PUMA plays a critical role in meditating the sensitivity of CRC cells to anti-EGFR antibodies, and that restoration of PUMA-mediated apoptosis is a promising approach to improve the efficacy of EGFR-targeted therapy.