Purpose To measure in vivo liver stiffness by using US time-harmonic elastography in a cohort of pediatric patients who were overweight to extremely obese with nonalcoholic fatty liver disease (NAFLD) and to evaluate the diagnostic value of time-harmonic elastography for differentiating stages of fibrosis associated with progressive disease. Materials and Methods In this prospective study, 67 consecutive adolescents (age range, 10-17 years; mean body mass index, 34.7 kg/m2; range, 21.4-50.4 kg/m2) with biopsy-proven NAFLD were enrolled. Liver stiffness was measured by using time-harmonic elastography based on externally induced continuous vibrations of 30 Hz to 60 Hz frequency and real-time B-mode-guided wave profile analysis covering tissue depths of up to 14 cm. The diagnostic accuracy of time-harmonic elastography in staging liver fibrosis was assessed with area under the receiver operating characteristic curve (AUC) analysis. Liver stiffness cutoffs for the differentiation of fibrosis stages were identified based on the highest Youden index. Results Time-harmonic elastography was feasible in all patients (0% failure rate), including 70% (n = 47) of individuals with extreme obesity (body mass index above the 99.5th percentile). AUC analysis for the detection of any fibrosis (≥ stage F1), moderate fibrosis (≥ stage F2), and advanced fibrosis (≥ stage F3) was 0.88 (95% confidence interval [CI]: 0.80, 0.96), 0.99 (95% CI: 0.98, 1.00), and 0.88 (95% CI: 0.80, 0.96), respectively. The best liver stiffness cutoffs were 1.52 m/sec for at least stage F1, 1.62 m/sec for at least stage F2, and 1.64 m/sec for at least stage F3. Conclusion US time-harmonic elastography allows accurate detection of moderate fibrosis even in pediatric patients with extreme obesity. Larger clinical trials are warranted to confirm the accuracy of US time-harmonic elastography.
© RSNA, 2018 Online supplemental material is available for this article.