The intestinal epithelial barrier separates the host from the microbiota that is normally tolerated or ignored. The breach of this barrier results in the entrance of bacteria or bacteria-derived products into the host, accessing the host circulation and inner organs leading to the uncontrolled inflammation as observed in patients with inflammatory bowel disease (IBD), that are characterized by an increased intestinal epithelial permeability. To mimic the entrance of bacterial-derived compounds into the host, an endotoxemia model has been adopted in which lipopolysaccharide (LPS), a component of the outer cell wall of Gram-negative bacteria, were injected into mice. In this study, a sublethal dose of LPS was intraperitoneally injected and the mice were subsequently monitored for 8 h using a disease score. Furthermore, the expression levels of the inflammatory cytokines Il6, Il1b, and Tnfa were analyzed in the spleen, liver and colon by qPCR at different time points post LPS injection. This model could be useful for the studies involving investigation of immune responses after the invasion of microorganisms or bacterial-derived products caused by a barrier breach of body surfaces.