Highly Efficient Nonfullerene Polymer Solar Cells Enabled by a Copper(I) Coordination Strategy Employing a 1,3,4-Oxadiazole-Containing Wide-Bandgap Copolymer Donor

Adv Mater. 2018 Jul;30(28):e1800737. doi: 10.1002/adma.201800737. Epub 2018 May 21.

Abstract

A novel wide-bandgap copolymer of PBDT-ODZ based on benzo[1,2-b:4,5-b' ]dithiophene (BDT) and 1,3,4-oxadiazole (ODZ) blocks is developed for efficient nonfullerene polymer solar cells (NF-PSCs). PBDT-ODZ exhibits a wide bandgap of 2.12 eV and a low-lying highest occupied molecular orbital (HOMO) level of -5.68 eV, which could match well with the low-bandgap acceptor of 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(4-hexylthienyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene (ITIC-Th), inducing a good complementary absorption from 300 to 800 nm and a minimal HOMO level offset (0.1 eV). The PBDT-ODZ:ITIC-Th devices exhibit a large open-circuit voltage (Voc ) of 1.08 eV and a low energy loss (Eloss ) of 0.50 eV, delivering a high power conversion efficiency (PCE) of 10.12%. By adding a small amount of copper(I) iodide (CuI) as an additive to form coordination complexes in the active blends, much higher device performances are achieved due to the improved absorption and crystallinity. After incorporating 4% of CuI, the PCE is elevated to 12.34%, with a Voc of 1.06 V, a Jsc of 17.1 mA cm-2 and a fill factor of 68.1%. This work not only provides a novel oxadiazole-containing wide-bandgap polymeric donor candidate for high-performance NF-PSCs but also presents an efficient morphology-optimization approach to elevate the PCE of NF-PSCs for future practical applications.

Keywords: 1,3,4-oxadiazole; copper(I) coordination strategy; morphology optimization; nonfullerene polymer solar cells; wide-bandgap copolymer.