Mosquito bite is usually followed by a local reaction, but severe or systemic reaction may, in rare cases, occur. Allergic reactions to Aedes communis (Ac) may be underestimated due to the lack of reliable diagnostic tools. In this multicenter study, 205 individuals reporting large local reactions to Ac were enrolled and studied for cutaneous or IgE reactivity to Ac, Blattella germanica, Penaeus monodon, and Dermatophagoides pteronyssinus. Extract and molecular IgE reactivity to bees, wasps, hornets, and yellow jacket venoms were also studied in 119 patients with a clinical history of adverse reaction to Hymenoptera. Immunoblot (IB) analysis and immunoCAP IgE inhibition experiments were carried out in selected sera. Ac sensitization was recorded in 96 (46.8%) patients on SPT. Strict relationship between Ac and D. pteronyssinus, B. germanica, P. monodon, or Apis mellifera reactivity on SPT was observed. Ac IgE recognition was seen in 60/131 (45.8%) patients, 49 (81.6%) of them SPT positive, and 5/14 IB reactors. Ac IgE sensitization was associated with Tabanus spp, A. mellifera, Vespula vulgaris, and Polistes dominula reactivity. A strict relationship between Ac IgE reactivity and Api m 1, Api m 2, Api m 3, Api m 5, and Api m 10 was recorded. IgE reactivity to AC was inhibited in 9/15 cases after serum absorption with the A. mellifera extract. Both SPT and IgE Ac reactivity is observed in about half of patients with a history of large local reactions to mosquito bites. The significant relationship between Ac sensitization and either extract or single bee venom components is suggestive of a "bee-mosquito syndrome" occurrence.
Keywords: Aedes communis; Apis mellifera; Component-resolved diagnosis; IgE; Polistes spp; Vespula spp.
© 2018 S. Karger AG, Basel.