Heme redox potentials hold the key to reactivity differences between nitric oxide reductase and heme-copper oxidase

Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6195-6200. doi: 10.1073/pnas.1720298115. Epub 2018 May 25.

Abstract

Despite high structural homology between NO reductases (NORs) and heme-copper oxidases (HCOs), factors governing their reaction specificity remain to be understood. Using a myoglobin-based model of NOR (FeBMb) and tuning its heme redox potentials (E°') to cover the native NOR range, through manipulating hydrogen bonding to the proximal histidine ligand and replacing heme b with monoformyl (MF-) or diformyl (DF-) hemes, we herein demonstrate that the E°' holds the key to reactivity differences between NOR and HCO. Detailed electrochemical, kinetic, and vibrational spectroscopic studies, in tandem with density functional theory calculations, demonstrate a strong influence of heme E°' on NO reduction. Decreasing E°' from +148 to -130 mV significantly impacts electronic properties of the NOR mimics, resulting in 180- and 633-fold enhancements in NO association and heme-nitrosyl decay rates, respectively. Our results indicate that NORs exhibit finely tuned E°' that maximizes their enzymatic efficiency and helps achieve a balance between opposite factors: fast NO binding and decay of dinitrosyl species facilitated by low E°' and fast electron transfer facilitated by high E°'. Only when E°' is optimally tuned in FeBMb(MF-heme) for NO binding, heme-nitrosyl decay, and electron transfer does the protein achieve multiple (>35) turnovers, previously not achieved by synthetic or enzyme-based NOR models. This also explains a long-standing question in bioenergetics of selective cross-reactivity in HCOs. Only HCOs with heme E°' in a similar range as NORs (between -59 and 200 mV) exhibit NOR reactivity. Thus, our work demonstrates efficient tuning of E°' in various metalloproteins for their optimal functionality.

Keywords: biomimetics; heme-copper oxidase; metalloprotein design; nitric oxide reductase; redox potentials.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacterial Proteins / chemistry
  • Bacterial Proteins / metabolism
  • Heme* / chemistry
  • Heme* / metabolism
  • Histidine / chemistry
  • Histidine / metabolism
  • Kinetics
  • Models, Molecular
  • Nitric Oxide / chemistry
  • Nitric Oxide / metabolism
  • Oxidation-Reduction
  • Oxidoreductases* / chemistry
  • Oxidoreductases* / metabolism
  • Spectrum Analysis

Substances

  • Bacterial Proteins
  • Nitric Oxide
  • Heme
  • Histidine
  • Oxidoreductases
  • copper oxidase
  • nitric-oxide reductase

Associated data

  • PDB/6D45