This study examined sex differences in head kinematics and neck muscle activity during sudden head perturbations. Sixteen competitive ice hockey players participated. Three muscles were monitored bilaterally using surface electromyography: sternocleidomastoid, scalene, and splenius capitis. Head and thorax kinematics were measured. Head perturbations were induced by the release of a 1.5-kg weight attached to a wire wrapped around an adjustable pulley secured to the participant's head. Perturbations were delivered in 4 directions (flexion, extension, right lateral bend, and left lateral bend). Muscle onset times, muscle activity, and head kinematics were examined during 3 time periods (2 preperturbation and 1 postperturbation). Females had significantly greater head acceleration during left lateral bend (31.4%, P < .05) and flexion (37.9%, P = .01). Females had faster muscle onset times during flexion (females = 51 ± 11 ms; males = 61 ± 10 ms; P = .001) and slower onset times during left lateral bend and extension. Females had greater left/right sternocleidomastoid and scalene activity during extension (P = .01), with no difference in head acceleration. No consistent neuromuscular strategy could explain all directional sex differences. Females had greater muscle activity postperturbation during extension, suggesting a neuromuscular response to counter sudden acceleration, possibly explaining the lack of head acceleration differences.
Keywords: head acceleration; head circumference:neck circumference ratio; neck muscle activity.