Background and objective: Previous research has indicated that altered expression of microRNAs (miRNAs) is in connection with osteogenesis of human periodontal ligament-derived stem cells (hPDLSCs). We investigated the mechanisms by which miR-543 promotes osteogenic differentiation of hPDLSCs.
Material and methods: First, the expression of miR-543 in hPDLSCs cultured with or without an osteogenic inductive cocktail was explored. Then, the function of miR-543 during osteogenesis of hPDLSCs was investigated by overexpressing and inhibiting miR-543. Next, 3 databases were used to predict target genes of miR-543 and a luciferase report was used to validate the direct regulation of miR-543 on the target gene. Further, a rescue experiment using co-transfection of miR-543 mimic and target mimic was performed to evaluate whether overexpressing the target gene could partly rescue the efficiency of overexpressing miR-543 on osteogenesis in hPDLSCs.
Results: miR-543 was upregulated during osteogenic differentiation of hPDLSCs. Functional experiments showed that overexpressing miR-543 could enhance osteogenesis, while inhibiting miR-543 resulted in reduced formation of mineralized nodules. The transducer of ERBB2, 2 (TOB2) was identified as a target gene of miR-543 and luciferase report revealed that miR-543 interacts directly with the 3'-untranslated repeat sequence of TOB2 mRNA. Overexpression of miR-543 inhibited the expression of TOB2 in both mRNA and protein levels while inhibiting miR-543 increased. Furthermore, the rescue experiment confirmed the promotional role of miR-543 TOB2 expression could be abrogated by overexpressing TOB2, which also had the effect of reducing osteogenic differentiation.
Conclusion: Our research confirmed that miR-543 is a promoter of osteogenesis in hPDLSCs, acting by inhibiting its target gene TOB2, which suggests that miR-543 may be a potential therapy for bone loss in periodontitis.
Keywords: microRNA-543; osteogenesis; periodontal ligament; regeneration; stem cell; transducer of ERBB2, 2.
© 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.