The development of on-demand cross-linking strategies is a key aspect in promoting mechanical properties of high-performance bioinspired nanocomposites. Here, we embed styrene sulfonyl azide groups with latent chemical reactivity into water-soluble copolymers and assemble those with high-aspect-ratio synthetic nanoclays to generate well-defined layered polymer/nanoclay nacre-mimetics. A considerable stiffening and strengthening occurs upon activation of the covalent cross-linking using simple heating. Varying the amount of cross-linkable units allows molecular control of mechanical properties from ductile to stiff and strong. Moreover, the covalent cross-linking enhances the moisture stability of water-borne nacre-mimetics. The strategy is facile and versatile allowing for a transfer into applications.
Keywords: C−H insertion chemistry; bioinspired nanocomposites; covalent cross-linking; humidity; mechanical properties; nacre-mimetics.