Uric acid and hypoxanthine are produced in the catabolism of purine. Abnormal urinary levels of these products are associated with many diseases and therefore it is necessary to have a simple and rapid method to detect them. Hence, we report a simple reverse phase high performance liquid chromatography (HPLC/UV) technique, developed and validated for simultaneous analysis of uric acid, hypoxanthine, and creatinine in human urine. Urine was diluted appropriately and eluted with C-18 column 100 mm × 4.6 mm with a C-18 precolumn 25 mm × 4.6 mm in series. Potassium phosphate buffer (20 mM, pH 7.25) at a flow rate of 0.40 mL/min was employed as the solvent and peaks were detected at 235 nm. Tyrosine was used as the internal standard. The experimental conditions offered a good separation of analytes without interference of endogenous substances. The calibration curves were linear for all test compounds with a regression coefficient, r2 > 0.99. Uric acid, creatinine, tyrosine, and hypoxanthine were eluted at 5.2, 6.1, 7.2, and 8.3 min, respectively. Intraday and interday variability were less than 4.6% for all the analytes investigated and the recovery ranged from 98 to 102%. The proposed HPLC procedure is a simple, rapid, and low cost method with high accuracy with minimum use of organic solvents. This method was successfully applied for the determination of creatinine, hypoxanthine, and uric acid in human urine.