A novel molecular model of connecting electron-donating (D) and electron-withdrawing (A) moieties via a space-enough and conjugation-forbidden linkage (D-Spacer-A) is proposed to develop efficient non-doped thermally activated delayed fluorescence (TADF) emitters. 10-(4-(4-(4,6-diphenyl-1,3,5-triazin-2-yl) phenoxy) phenyl)-9,9-dimethyl-9,10-dihydroacridine (DMAC-o-TRZ) was designed and synthesized accordingly. As expected, it exhibits local excited properties in single-molecule state as D-Spacer-A molecular backbone strongly suppress the intramolecular charge-transfer (CT) transition. And intermolecular CT transition acted as the vital radiation channel for neat DMAC-o-TRZ film. As in return, the non-doped device exhibits a remarkable maximum external quantum efficiency (EQE) of 14.7 %. These results prove the feasibility of D-Spacer-A molecules to develop intermolecular CT transition TADF emitters for efficient non-doped OLEDs.
Keywords: charge transfer; donor-acceptor systems; organic electronics; organic light-emitting diodes; thermally activated delayed fluorescence.
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.