Purpose: This study was conducted to determine the benefit of magnetic resonance imaging (MRI) at 7 T in detecting structural lesions and previously unidentified abnormalities in patients with tuberous sclerosis complex (TSC).
Methods: Thirteen patients with TSC (8-36 years, seven males) previously diagnosed by 3 T MRI underwent additional imaging at 7 T, which included T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE), T2-weighted turbo spin echo (TSE), SPACE fluid attenuated inversion recovery (FLAIR), susceptibility weighted imaging (SWI), white matter suppressed (WM-suppressed), and gray-white matter tissue border enhancement (GW-TBE) MPRAGE sequences. Subtle lesions, tuberal morphology, and perituberal cortex abnormalities were examined and compared to those observed at 3 T MRI using standard sequences.
Results: Improved visualization of TSC lesions was achieved in all subjects at 7 T compared to 3 T imaging, and three subjects received resective surgery. The 7 T T1- and T2-weighted images had high spatial resolution and provided a clear delineation of the perituberal cortex. SWI revealed abnormal blood vessel morphology. WM-suppressed and GW-TBE protocols, adjusted specifically for TSC imaging, aided in visualizing lesions and uncovered more extensive subtle lesions and abnormalities beyond the conventionally detected tubers.
Conclusions: Due to its high spatial resolution and powerful new imaging protocols, 7 T MRI provided a better evaluation of subtle lesions and perituberal details compared with conventional MRI at 3 T, with potential implications for diagnosis and operative treatment of TSC and its related epilepsy.
Keywords: 7 T MRI; Cerebral cortex; Diagnostic imaging; Epilepsy; Tuberous sclerosis complex.