Cost effectiveness is a major concern when implementing low impact development (LID) practices for urban stormwater management (USWM). To optimize LID layout, an efficient and more reliable method, namely, the Marginal-Cost-based Greedy Strategy (MCGS) was developed based on the economic law of increasing marginal costs (MCs) and the stepwise minimization of MCs. To verify its broad applicability, MCGS was applied in three case studies in China with different system settings and environmental goals. Both Cases I and II were watershed-scale studies in Suzhou City urban districts, but in Case II, the impact of future uncertainties (i.e., climate change, urban expansion, and LID performance degradation) on USWM system performance was considered. Case III was a block-scale study of the Xixian New District (a pilot "Sponge City" in China), which involved a rainwater pipe network and a complicated environmental goal. Compared with the extensively used but complicated NSGA-II, the MCGS performed better in terms of yielding more converged performance trade-offs, providing more choices for city planners, and requiring much less computational resources in all three cases. Meanwhile, MCGS established an optimal pathway for multi-stage LID layout planning. The success of MCGS indicated that the MC of a LID practice determined its favorability in an USWM system.
Keywords: Greedy strategy; Low impact development; Marginal cost; NSGA-II; Optimization; Stormwater management.
Copyright © 2018 Elsevier B.V. All rights reserved.