The heart completes a complex set of tasks, including the initiation or propagation of an electrical signal with regularity (proper heart rate and rhythm) and generating sufficient force of contraction (contractility). Probing mechanisms of heart diseases and quantifying drug efficacies demand a platform that is capable of continuous operation inside a cell incubator for long-term measurement of cardiomyocyte (CM) monolayers. Here, we report a microdevice array that is capable of performing continuous, long-term (14 days) measurement of contractility, beating rate, and beating rhythm in a monolayer of human-induced pluripotent stem cell-CMs (hiPSC-CMs). The device consists of a deformable membrane with embedded carbon nanotube (CNT)-based strain sensors. Contraction of the hiPSC-CMs seeded on the membrane induces electrical resistance change of the CNT strain sensor. Continuously reading the sensor signals revealed that hiPSC-CMs started to beat from day 2 and plateaued on day 5. Average contractile stress generated by a monolayer of hiPSC-CMs was determined to be 2.34 ± 0.041 kPa with a beating rate of 1.17 ± 0.068 Hz. The device arrays were also used to perform comprehensive measurement of the beating rate, rhythm, and contractility of the hiPSC-CMs and quantify the cell responses to different concentrations of agonists and antagonists, which altered the average contractile stress to the range of 1.15 ± 0.13 to 3.96 ± 0.53 kPa. The continuous measurement capability of the device arrays also enabled the generation of Poincaré plots for revealing subtle changes in the beating rhythm of hiPSC-CMs under different drug treatments.
Keywords: beating rate; beating rhythm; carbon nanotube; continuous measurement; contractile stress; hiPS-cardiomyocytes; microdevice array.