The presence of unvaccinated free-roaming dogs (FRD) amidst human settlements is a major contributor to the high incidence of rabies in countries such as India, where the disease is endemic. Estimating FRD population size is crucial to the planning and evaluation of interventions, such as mass immunisation against rabies. Enumeration techniques for FRD are resource intensive and can vary from simple direct counts to statistically complex capture-recapture techniques primarily developed for ecological studies. In this study we compared eight capture-recapture enumeration methods (Lincoln-Petersen's index, Chapman's correction estimate, Beck's method, Schumacher-Eschmeyer method, Regression method, Mark-resight logit normal method, Huggin's closed capture models and Application SuperDuplicates on-line tool) using direct count data collected from Shirsuphal village of Baramati town in Western India, to recommend a method which yields a reasonably accurate count to use for effective vaccination coverage against rabies with minimal resource inputs. A total of 263 unique dogs were sighted at least once over 6 observation occasions with no new dogs sighted on the 7th occasion. Besides this direct count, the methods that do not account for individual heterogeneity yielded population estimates in the range of 248-270, which likely underestimate the real FRD population size. Higher estimates were obtained using the Huggin's Mh-Jackknife (437 ± 33), Huggin's Mth-Chao (391 ± 26), Huggin's Mh-Chao (385 ± 30), models and Application "SuperDuplicates" tool (392 ± 20) and were considered more robust. When the sampling effort was reduced to only two surveys, the Application SuperDuplicates online tool gave the closest estimate of 349 ± 36, which is 74% of the estimated highest population of free-roaming dogs in Shirsuphal village. This method may thus be considered the most reliable method for estimating the FRD population with minimal inputs (two surveys conducted on consecutive days).
Keywords: capture-recapture; dog counts; dog population management; enumeration; free-roaming dogs; mass vaccination; rabies.