The lytic transglycosylase MltB connects membrane homeostasis and in vivo fitness of Acinetobacter baumannii

Mol Microbiol. 2018 Sep;109(6):745-762. doi: 10.1111/mmi.14000. Epub 2018 Sep 28.

Abstract

Acinetobacter baumannii has emerged as a leading nosocomial pathogen, infecting a wide range of anatomic sites including the respiratory tract and the bloodstream. In addition to being multi-drug resistant, little is known about the molecular basis of A. baumannii pathogenesis. To better understand A. baumannii virulence, a combination of a transposon-sequencing (TraDIS) screen and the neutropenic mouse model of bacteremia was used to identify the full set of fitness genes required during bloodstream infection. The lytic transglycosylase MltB was identified as a critical fitness factor. MltB cleaves the MurNAc-GlcNAc bond of peptidoglycan, which leads to cell wall remodeling. Here we show that MltB is part of a complex network connecting resistance to stresses, membrane homeostasis, biogenesis of pili and in vivo fitness. Indeed, inactivation of mltB not only impaired resistance to serum complement, cationic antimicrobial peptides and oxygen species, but also altered the cell envelope integrity, activated the envelope stress response, drastically reduced the number of pili at the cell surface and finally, significantly decreased colonization of both the bloodstream and the respiratory tract.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acinetobacter Infections / microbiology
  • Acinetobacter Infections / pathology*
  • Acinetobacter baumannii / genetics*
  • Acinetobacter baumannii / metabolism
  • Acinetobacter baumannii / pathogenicity*
  • Animals
  • Antimicrobial Cationic Peptides / pharmacology
  • Cell Membrane / metabolism*
  • Complement System Proteins / immunology
  • Female
  • Glycosyltransferases / genetics*
  • Glycosyltransferases / metabolism*
  • High-Throughput Nucleotide Sequencing
  • Mice
  • Mice, Inbred CBA
  • Muramic Acids / metabolism
  • Peptidoglycan / metabolism
  • Stress, Physiological

Substances

  • Antimicrobial Cationic Peptides
  • Muramic Acids
  • Peptidoglycan
  • N-acetylmuramic acid
  • Complement System Proteins
  • Glycosyltransferases
  • murein transglycosylase