Although cure rates for acute leukemia have steadily improved over the past decades, leukemia remains a deadly disease. Enhanced risk stratification and new therapies are needed to improve outcome. Extensive genetic analyses have identified many mutations that contribute to the development of leukemia. However, most mutations occur infrequently and most gene alterations have been difficult to target. Most patients have more than one driver mutation in combination with secondary mutations, that result in a leukemic transformation via the alteration of proteins. The proteomics of acute leukemia could more directly identify proteins to facilitate risk stratification, predict chemoresistance and aid selection of therapy. Areas covered: This review discusses aberrantly expressed proteins identified by mass spectrometry and reverse phase protein arrays and their relationship to survival. In addition, we will discuss proteins in the context of functionally related protein groups. Expert commentary: Proteomics is a powerful tool to analyze protein abundance and functional alterations simultaneously for large numbers of patients. In the forthcoming years, validation of tools to quickly assess protein levels to enable routine rapid profiling of proteins with differential abundance and functional activation may be used as adjuncts to aid in therapy selection and to provide additional prognostic insights.
Keywords: Leukemia; Reverse Phase Protein Array (RPPA); biomarkers (or) biomarker discovery.