Aseptic loosening and menopause‑induced osteoporosis are caused by an imbalance between bone formation and osteolysis. With an aging population, the probability of simultaneous occurrence of such conditions in an elderly individual is increasing. Strontium ranelate (SR) is an anti‑osteoporosis drug that promotes bone formation and inhibits osteolysis. The present study compared the effects of SR with those of the traditional anti‑osteoporosis drug alendronate (ALN) using an ovariectomized mouse model of osteolysis. The degree of firmness of the prosthesis and the surrounding tissue was examined, a micro‑CT scan of the prosthesis and the surrounding tissue was performed, and the levels of inflammatory and osteogenic and osteoclast factors were examined. It was observed that treatment with SR and ALN improved the bond between the prosthesis and the surrounding bone tissue by reducing the degree of osteolysis, thus improving the quality of bone around the prosthesis. SR increased the secretion of osteocalcin, runt‑related transcription factor 2 and osteoprotegerin (OPG). It additionally decreased the expression of the receptor activator of nuclear factor‑κB ligand (RANKL) and consequently increased the protein ratio OPG/RANKL, whereas ALN exhibited the opposite effect. Furthermore, SR and ALN suppressed tumor necrosis factor‑α and interleukin‑1β production, with SR exerting a more marked effect. The present results demonstrate that SR and ALN may stimulate bone formation and inhibit bone resorption in the ovariectomized mouse model of wear particle‑mediated osteolysis, with SR demonstrating better effects compared with ALN.