Turning Toxicants into Safe Therapeutic Drugs: Cytolytic Peptide-Photosensitizer Assemblies for Optimized In Vivo Delivery of Melittin

Adv Healthc Mater. 2018 Aug;7(16):e1800380. doi: 10.1002/adhm.201800380. Epub 2018 Jun 21.

Abstract

Melittin (MEL) is recognized as a highly potent therapeutic peptide for treating various human diseases including cancer. However, the clinical applications of MEL are largely restricted by its severe hemolytic activity and nonspecific cytotoxicity. Here, it is found that MEL can form a stable supramolecular nanocomplex of ≈60 nm with the photosensitizer chlorin e6 (Ce6), which after hyaluronic acid (HA) coating can achieve robust, safe, and imaging-guided tumor ablation. The as-designed nanocomplex (denoted as MEL/Ce6@HA) shows largely reduced hemolysis and selective cytolytic activity toward cancer cells. Upon laser irradiation, the loaded photosensitive Ce6 can synergistically facilitate the membrane-lytic efficiency of melittin and greatly increase the tumor penetration depth of the complexes in multicellular tumor spheroids. In vivo experiments reveal that MEL/Ce6@HA can realize enhanced tumor accumulation, reduced liver deposition, and rapid body clearance, which are beneficial for highly efficient and safe chemo-photodynamic dual therapy. This work develops a unique supramolecular strategy for optimized in vivo delivery of melittin and may have implications for the development of peptide-based theranostics.

Keywords: combination therapy; light-activatable; melittin peptides; self-traceable; supramolecular self-assembly.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • A549 Cells
  • Adenocarcinoma, Bronchiolo-Alveolar / drug therapy
  • Adenocarcinoma, Bronchiolo-Alveolar / metabolism
  • Animals
  • Cell Line, Tumor
  • Female
  • Hemolysis / drug effects
  • Humans
  • Melitten / chemistry*
  • Melitten / pharmacology
  • Melitten / therapeutic use
  • Mice, Inbred BALB C
  • Mice, Nude
  • Nanoparticles / chemistry*
  • Peptides / chemistry*
  • Photochemotherapy
  • Photosensitizing Agents / chemistry*

Substances

  • Peptides
  • Photosensitizing Agents
  • Melitten