In the last years, the technology for producing the important medical radionuclide technetium-99m by cyclotrons has become sufficiently mature to justify its introduction as an alternative source of the starting precursor [99mTc][TcO4]- ubiquitously employed for the production of 99mTc-radiopharmaceuticals in hospitals. These technologies make use almost exclusively of the nuclear reaction 100Mo(p,2n)99mTc that allows direct production of Tc-99m. In this study, it is conjectured that this alternative production route will not replace the current supply chain based on the distribution of 99Mo/99mTc generators, but could become a convenient emergency source of Tc-99m only for in-house hospitals equipped with a conventional, low-energy, medical cyclotron. On this ground, an outline of the essential steps that should be implemented for setting up a hospital radiopharmacy aimed at the occasional production of Tc-99m by a small cyclotron is discussed. These include (1) target production, (2) irradiation conditions, (3) separation/purification procedures, (4) terminal sterilization, (5) quality control, and (6) Mo-100 recovery. To address these issues, a comprehensive technology for cyclotron-production of Tc-99m, developed at the Legnaro National Laboratories of the Italian National Institute of Nuclear Physics (LNL-INFN), will be used as a reference example.
Keywords: (99m)Tc-radiopharmaceuticals; Cyclotron; European Pharmacopoeia; Generator; Hospital radiopharmacy; Molybdenum-100; SPECT; Technetium-99m.
Copyright © 2018 Elsevier Ltd. All rights reserved.