Analyzing mixing systems using a new generation of Bayesian tracer mixing models

PeerJ. 2018 Jun 21:6:e5096. doi: 10.7717/peerj.5096. eCollection 2018.

Abstract

The ongoing evolution of tracer mixing models has resulted in a confusing array of software tools that differ in terms of data inputs, model assumptions, and associated analytic products. Here we introduce MixSIAR, an inclusive, rich, and flexible Bayesian tracer (e.g., stable isotope) mixing model framework implemented as an open-source R package. Using MixSIAR as a foundation, we provide guidance for the implementation of mixing model analyses. We begin by outlining the practical differences between mixture data error structure formulations and relate these error structures to common mixing model study designs in ecology. Because Bayesian mixing models afford the option to specify informative priors on source proportion contributions, we outline methods for establishing prior distributions and discuss the influence of prior specification on model outputs. We also discuss the options available for source data inputs (raw data versus summary statistics) and provide guidance for combining sources. We then describe a key advantage of MixSIAR over previous mixing model software-the ability to include fixed and random effects as covariates explaining variability in mixture proportions and calculate relative support for multiple models via information criteria. We present a case study of Alligator mississippiensis diet partitioning to demonstrate the power of this approach. Finally, we conclude with a discussion of limitations to mixing model applications. Through MixSIAR, we have consolidated the disparate array of mixing model tools into a single platform, diversified the set of available parameterizations, and provided developers a platform upon which to continue improving mixing model analyses in the future.

Keywords: Bayesian statistics; Fatty acids; MixSIR; Mixing models; SIAR; Stable isotopes; Trophic ecology.

Grants and funding

Funding was provided in part by the Cooperative Institute for Marine Ecosystems and Climate (CIMEC) and the Center for the Advancement of Population Assessment Methodology (CAPAM). Brian C. Stock received support from the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144086. There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.