A Two-Dimensional Hole-Transporting Material for High-Performance Perovskite Solar Cells with 20 % Average Efficiency

Angew Chem Int Ed Engl. 2018 Aug 20;57(34):10959-10965. doi: 10.1002/anie.201806392. Epub 2018 Jul 23.

Abstract

A readily available small molecular hole-transporting material (HTM), OMe-TATPyr, was synthesized and tested in perovskite solar cells (PSCs). OMe-TATPyr is a two-dimensional π-conjugated molecule with a pyrene core and four phenyl-thiophene bridged triarylamine groups. It can be readily synthesized in gram scale with a low lab cost of around US$ 50 g-1 . The incorporation of the phenyl-thiophene units in OMe-TATPyr are beneficial for not only carrier transportation through improved charge delocalization and intermolecular stacking, but also potential trap passivation via Pb-S interaction as supported by depth-profiling XPS, photoluminescence, and electrochemical impedance analysis. As a result, an impressive best power conversion efficiency (PCE) of up to 20.6 % and an average PCE of 20.0 % with good stability has been achieved for mixed-cation PSCs with OMe-TATPyr with an area of 0.09 cm2 . A device with an area of 1.08 cm2 based on OMe-TATPyr demonstrates a PCE of 17.3 %.

Keywords: hole-transporting materials; perovskites; pyrene; solar cells; triarylamines.