Fourier-transform-spectroscopic photoabsorption cross sections and oscillator strengths for the S2 BΣu-3-XΣg-3 system

J Chem Phys. 2018 Jun 28;148(24):244302. doi: 10.1063/1.5029929.

Abstract

Photoabsorption cross sections and oscillator strengths for the strong, predissociating vibrational bands, v ≥ 11, in the S2 BΣu-3-XΣg-3(v,0) system are reported. Absorption measurements were undertaken on S2 vapor produced by a radio-frequency discharge through H2S seeded in helium, and also in a two-temperature sulfur furnace, at temperatures of 370 K and 823 K, respectively. S2 column densities were determined in each source by combining experimental line strengths in low-v non-predissociating B - X bands (v < 7) with calculated line f-values based on measured radiative lifetimes and calculated branching ratios. The broad-band capabilities of two vacuum-ultraviolet Fourier-transform spectrometers, used with instrumental resolutions of 0.22 cm-1 and 0.12 cm-1, respectively, allowed for simultaneous recordings of both non-predissociating and predissociating bands, thus placing the predissociating-band cross sections on a common absolute scale. Uncertainties in the final cross section datasets are estimated to be 15% for the 370-K vapor and 10% for the 823-K vapor. The experimental cross sections are used to inform a detailed predissociation model of the B(v) levels in Paper II [Lewis et al., J. Chem. Phys. 148, 244303 (2018)]. For astrophysical and other applications, this model can be adjusted simply to provide isotopologue-specific cross sections for a range of relevant temperatures.