The Arabidopsis Histone Chaperone FACT: Role of the HMG-Box Domain of SSRP1

J Mol Biol. 2018 Aug 17;430(17):2747-2759. doi: 10.1016/j.jmb.2018.06.046. Epub 2018 Jun 30.

Abstract

Histone chaperones play critical roles in regulated structural transitions of chromatin in eukaryotic cells that involve nucleosome disassembly and reassembly. The histone chaperone FACT is a heterodimeric complex consisting in plants and metazoa of SSRP1/SPT16 and is involved in dynamic nucleosome reorganization during various DNA-dependent processes including transcription, replication and repair. The C-terminal HMG-box domain of the SSRP1 subunit mediates interactions with DNA and nucleosomes in vitro, but its relevance in vivo is unclear. Here, we demonstrate that Arabidopsis ssrp1-2 mutant plants express a C-terminally truncated SSRP1 protein. Although the structure of the truncated HMG-box domain is distinctly disturbed, it still exhibits residual DNA-binding activity, but has lost DNA-bending activity. Since ssrp1-2 plants are phenotypically affected but viable, the HMG-box domain may be functionally non-essential. To examine this possibility, SSRP1∆HMG completely lacking the HMG-box domain was studied. SSRP1∆HMG in vitro did not bind to DNA and its interactions with nucleosomes were severely reduced. Nevertheless, the protein showed a nuclear mobility and protein interactions similar to SSRP1. Interestingly, expression of SSRP1∆HMG is almost as efficient as that of full-length SSRP1 in supporting normal growth and development of the otherwise non-viable Arabidopsis ssrp1-1 mutant. SSRP1∆HMG is structurally similar to the fungal ortholog termed Pob3 that shares clear similarity with SSRP1, but it lacks the C-terminal HMG-box. Therefore, our findings indicate that the HMG-box domain conserved among SSRP1 proteins is not critical in Arabidopsis, and thus, the functionality of SSRP1/SPT16 in plants/metazoa and Pob3/Spt16 in fungi is perhaps more similar than anticipated.

Keywords: DNA/nucleosome interaction; HMG-box domain; chromatin; histone; transcript elongation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / genetics
  • Arabidopsis / metabolism*
  • Arabidopsis Proteins / chemistry
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Chromatin / chemistry*
  • Chromosomal Proteins, Non-Histone / chemistry
  • Chromosomal Proteins, Non-Histone / genetics
  • Chromosomal Proteins, Non-Histone / metabolism*
  • DNA Replication
  • DNA, Plant / chemistry
  • DNA, Plant / genetics
  • DNA, Plant / metabolism
  • HMG-Box Domains*
  • Histone Chaperones / chemistry
  • Histone Chaperones / genetics
  • Histone Chaperones / metabolism*
  • Nucleosomes / chemistry
  • Nucleosomes / genetics
  • Nucleosomes / metabolism*
  • Transcription Factors / chemistry
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Arabidopsis Proteins
  • Chromatin
  • Chromosomal Proteins, Non-Histone
  • DNA, Plant
  • Histone Chaperones
  • Nucleosomes
  • STRUCTURE SPECIFIC RECOGNITION PROTEIN 1, Arabidopsis
  • Transcription Factors