Identification of a gene-expression predictor for diagnosis and personalized stratification of lupus patients

PLoS One. 2018 Jul 5;13(7):e0198325. doi: 10.1371/journal.pone.0198325. eCollection 2018.

Abstract

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by a wide spectrum of clinical manifestations and degrees of severity. Few genomic biomarkers for SLE have been validated and employed to inform clinical classifications and decisions. To discover and assess the gene-expression based SLE predictors in published studies, we performed a meta-analysis using our established signature database and a data similarity-driven strategy. From 13 training data sets on SLE gene-expression studies, we identified a SLE meta-signature (SLEmetaSig100) containing 100 concordant genes that are involved in DNA sensors and the IFN signaling pathway. We rigorously examined SLEmetaSig100 with both retrospective and prospective validation in two independent data sets. Using unsupervised clustering, we retrospectively elucidated that SLEmetaSig100 could classify clinical samples into two groups that correlated with SLE disease status and disease activities. More importantly, SLEmetaSig100 enabled personalized stratification demonstrating its ability to prospectively predict SLE disease at the individual patient level. To evaluate the performance of SLEmetaSig100 in predicting SLE, we predicted 1,171 testing samples to be either non-SLE or SLE with positive predictive value (97-99%), specificity (85%-84%), and sensitivity (60-84%). Our study suggests that SLEmetaSig100 has enhanced predictive value to facilitate current SLE clinical classification and provides personalized disease activity monitoring.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomarkers*
  • Female
  • Gene Expression Regulation / genetics*
  • Humans
  • Interferons / genetics
  • Male
  • Monitoring, Physiologic
  • Precision Medicine
  • Severity of Illness Index
  • Signal Transduction / genetics
  • Transcriptome / genetics*

Substances

  • Biomarkers
  • Interferons

Grants and funding

This study was supported by the grants (81260139, 81060073, 81560275, 61562021 to WX, 30560161 to YD) from Natural Science Foundation of China; the grant (2018CXTD350 to YD) from Hainan Natural Science Foundation Innovation Research Team Project; the grant (2015SF39 to YD, ZDYF2018103 to WX) from Hainan special projects of Social Development; the grant (201515 to YD) from Hainan Association for academic excellence Youth Science and Technology Innovation Program; and the grant (805106 to YD) from Hainan Natural Science Foundation of China. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.