Background: Gastric cancer (GC) is one of the most common malignancies worldwide, particularly in China. DNA damage-inducible transcript 4 (DDIT4) is a mammalian target of rapamycin inhibitor and is induced by various cellular stresses; however, its critical role in GC remains poorly understood. The present study aimed to investigate the potential relationship and the underlying mechanism between DDIT4 and GC development.
Methods: We used western blotting, real-time polymerase chain reaction, and immunohistochemical or immunofluorescence to determine DDIT4 expression in GC cells and tissues. High-content screening, cell counting kit-8 assays, colony formation, and in vivo tumorigenesis assays were performed to evaluate cell proliferation. Flow cytometry was used to investigate cell apoptosis and cell cycle distribution.
Results: DDIT4 was upregulated in GC cells and tissue. Furthermore, downregulating DDIT4 in GC cells inhibited proliferation both in vitro and in vivo and increased 5-fluorouracil-induced apoptosis and cell cycle arrest. In contrast, ectopic expression of DDIT4 in normal gastric epithelial cells promoted proliferation and attenuated chemosensitivity. Further analysis indicated that the mitogen-activated protein kinase and p53 signaling pathways were involved in the suppression of proliferation, and increased chemosensitivity upon DDIT4 downregulation.
Conclusion: DDIT4 promotes GC proliferation and tumorigenesis, providing new insights into the role of DDIT4 in the tumorigenesis of human GC.
Keywords: DNA damage-inducible transcript 4; Gastric cancer; Mitogen-activated protein kinase; Proliferation; p53.