Magnetic-Field-Induced Kondo Metal Realized in YbB_{12}

Phys Rev Lett. 2018 Jun 22;120(25):257206. doi: 10.1103/PhysRevLett.120.257206.

Abstract

The specific heat of the Kondo insulator YbB_{12} has been measured up to 60 T. The Sommerfeld coefficient γ significantly increases at around 50 T, where the insulator metal transition occurs with a steep increase of the magnetization. γ reaches 67 mJ/(mol K^{2}) at high fields, which directly indicates that the quasiparticles gain a heavy thermodynamic effective mass and transform into a Kondo metal under magnetic fields. The field-induced Kondo metal has a rather high Kondo temperature around 200 K. The strong Kondo coupling proves that the energy gap collapse does not correspond to the breakdown of the Kondo bound state. The steep increase of the magnetization at the transition manifests the sharp density of states at the Fermi energy formed via the Kondo resonance.