Pollution of environment due to increased exploitation of minerals has been on the rise, and vanadium, a metal in the first transition series essential for mammalian existence, is a major component of air pollution. This study investigated the clinico-pathological, hepato-renal toxicity, and cytogenotoxicity of intraperitoneal exposure of African giant rats (AGRs), a proposed model for ecotoxicological research to sodium metavanadate. A total of 27 adult male African giant rats weighing 975 ± 54.10 g were distributed into two major groups: sodium metavanadate (SMV) treated and control. They were observed daily for clinical signs of toxicity. Four rats from each group were randomly collected and sacrificed after 3, 7, and 14 days of SMV treatment. Liver, kidney, and bone marrow were analyzed for histopathology and micronucleated normochromated and polychromated erythrocytes (MNNCE and MNPCE), respectively. Clinical signs in treated AGR include sluggish and weak movements, un-groomed fur, and labored breathing. Histology of the kidney revealed severe glomerular atrophy, tubular ectasia, and vacuolar degeneration of tubular epithelium, while liver histology showed sinusoidal congestion and severe hepatocellular necrosis after 14 days SMV exposure. Also, MNNCE and MNPCE significantly increased with a decrease in PCE/NCE ratio in SMV-treated AGR, suggestive of alternations in bone marrow cell proliferation. Hence, SMV treatment to AGR resulted to severe clinicopathologic alterations, kidney, and liver dysfunction and cytogenotoxicity evident by somatic mutation induction which could be severe with prolonged exposure. This suggests African giant rat as an ecotoxicological model to measure major health risks to animals and human populations in highly polluted environment.
Keywords: African giant rats; Ecotoxicological model; Genotoxicity; Micronucleus assay; Sodium metavanadate.