Methamphetamine (METH), an amphetamine-like drug, is one of the most commonly used central nervous system psychostimulants worldwide. METH abuse frequently leads to cognitive decline and dementia-like changes, but the mechanisms remain poorly understood. In the present study, the mechanisms of METH-induced changes in Alzheimer's disease-like pathological protein in Neuro2A cells were explored. Our results indicated that METH exposure significantly increased the expression of the pathological protein hyperphosphorylated tau (p-tau). Further analysis revealed that METH exposure obviously disrupted insulin signalling, resulted in brain insulin resistance, which manifested as downregulation of the insulin receptor substrate-1, AKTser 473, and GSK3β activation. Notably, the linkage between p-tau expression and insulin signalling can be partially verified by treatment with the insulin-sensitizing drug rosiglitazone and GSK3β inhibitor TWS119 which specifically reversed METH-induced hyperphosphorylation of tau. Our results indicate that insulin signalling can be therapeutically exploited for attenuating METH-induced upregulation of p-tau.
Keywords: Alzheimer’s disease; Insulin signalling pathway; Methamphetamine; Neurodegenerative damage; Tau.
Copyright © 2018. Published by Elsevier B.V.