We performed the in silico genome-wide identification of antimicrobial peptides against the available genome sequence of the naked mole rat Heterocephalus glaber (H. glaber). Our results showed the presence of Hg-CATH, the single cathelicidin containing the antimicrobial domain in H. glaber. We chemically synthesized a 25 amino-acid peptide (ΔHg-CATH) corresponding to the predicted antimicrobial-active core region of Hg-CATH, and evaluated its antibacterial activity against seven bacterial strains. The ΔHg-CATH peptide exhibited strong bactericidal activity against gram-negative bacteria, including a multi-drug resistant strain, while showing low toxicity towards mammalian cells, including erythrocytes. Scanning electron microscopy images of bacterial cells treated with ΔHg-CATH showed disruption of their membranes due to the formation of toroidal pores. Identifying novel antimicrobial peptides, such as Hg-CATH, may be important for identifying candidate peptides for the control of multi-drug resistant bacteria.
Keywords: Antimicrobial peptide; Cathelicidin; Heterocephalus glaber; Membrane disruption; Naked mole rat.
Copyright © 2018 Elsevier B.V. All rights reserved.