In this review, the critical parts and milestones for data harmonization, from the biomedical engineering perspective, are outlined. The need for data sharing between heterogeneous sources paves the way for cohort harmonization; thus, fostering data integration and interdisciplinary research. Unmet needs in chronic diseases, as well as in other diseases, can be addressed based on the integration of patient health records and the sharing of information of the clinical picture and outcome. The stratification of patients, the determination of various clinical and outcome features, and the identification of novel biomarkers for the different phenotypes of the disease characterize the impact of cohort harmonization in patient-centered clinical research and in precision medicine. Subsequently, the establishment of matching techniques and ontologies for the creation of data schemas are also presented. The exploitation of web technologies and data-collection tools supports the opportunities to achieve new levels of integration and interoperability. Ethical and legal issues that arise when sharing and harmonizing individual-level data are discussed in order to evaluate the harmonization potential. Use cases that shape and test the harmonization approach are explicitly analyzed along with their significant results on their research objectives. Finally, future trends and directions are discussed and critically reviewed toward a roadmap in cohort harmonization for clinical medicine.